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Abstract

We show that the Riemannian manifold characterizing the
scalar fieid interactions of d=9 Maxweil-Einstein (M~E) super-
gravity is the convex cone associated with a Jordan algebra of
degree 2. This result is similar ta 1hal~of a ctass ol
d=5, N=2, M-E superg-rav‘rty theories associated with Jardan
algebras of degree 3. We also construct the unique irreduci-

ble d=9 Yang-Mills supargravity which has non-compact gauge

group S2(2:R)

*This work was performed under the auspices of the U.S. Department of

Energy by the Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.



Introduction.

in a recent work [1] three of us have shown that there is a 1-1
association of the members of a certain class of N=2, d=5 Maxwell Ein-
stein (M-E) supergravity theories with unital. formally real. Jordan aige-
bras of degree 3. (By Maxweil-Einstein supergravitly we mean the cou-
pling of an arbitrary number. n. of Abeiian vector suparmuitipiets to
supergravity) . Dimensional reduction yields a class of N=2,d=4 M-E super-
gravity theories associated with these Jordan aigebras (the general d=a
model has been discussed by de Wit et.al. (2]). A characteristic feature
of these theories. in both d=5 and d=4. is that the Riemannian manifold M
that is parametrized by the scalar fields. and which determines their non-
polynomial! interactions. is a symmetric space. in d=4 it has recentiy
been shown that the only symmetric spaces allowed in M-E supergravity
theory are either compliex projective spaces or those associated with Jordan

algebras [3]. and the former can all be obtained as truncations of the

latter.

In the light of these resuits for N=2 supergravity in d=5 and d=4 it is
of interest to investigate whether N=4 Maxwell-Einstein supergravity theories
have a similar interpretation in some spacstime dimensions. The maximai
dimension for a M-E supergravity theory is 10. but there is only one
scalar field in this case [4] so the scalar field manifoid is rather trivial (it
is SO(1,1)). The d=9 (5§]. d=4 (6]. d=5 (7] and d=8 (8] maximal M-E
supergra'vity theories have all been constructed recently and the scalar fielg
manifolds determined. The results which agree. for d=4, with an earlier

prediction [9)] may be summarised by the formula

A So(\o-c\,ay

So(ie-4) x Som)

1.



for the manifold M* paramertrized by the scalar fieids of the Maxwell super-
multiplets. The full Riemannian manifoild M (parametrized by all the scalar
fields) is locally M" x SO(1,1) (or M'x SUCT, 1Y/U(1) in d=4). the exira
SO(Y. 1) (or SU(1. 1)) factor coming from the scalar(s) in the graviten

supermultipiet.

A geomatrical interpretation of the d=9 resuilt was presaented in
ref. (5). The purpose of the presant waork is (0 present an alternative
intarpretation in terms of the convex cones associated with Jordan ailge-
bras. This. we believa, has several advantages. Firstly it provides a link.
through the theory of Jordan algebras. between N=2 and N=4 (or "maxi—
mail” in hignher dimensions) M-E theories. Secondly, it provides a
geometrical interpretation for the scalar field function that muitiplies the
kinetic term of the Maxweil fields. Thirdly, and most imporiantly, it pro-
vides an eoxplicit construction of all the scalar field interactions in terms of
a singie quadratic polynomial, whicn is identitiabnte as the “"norm form® of an
associated Jordan algebra. Because the norm form is quadratic the Jor-
dan algebra has degree 2. This is to be compared with the N=2, d=5
M-E theories associated with Jordan algebras of degree 3. The reduction
in degree accounts for the relative simplicity of the d=9 M-E theories.

compared to those of d=s5.

As in the N=2 d=s case the connection to Joraan algeoras can be

summarized by the result

M=) =  Sh(@)
Pﬂ.«’t(?)

(1.2)

for the d=9 scalar field manifoid M , where Str, and Aut are the
"reduced structure”™ and automorpnhism group,raspectivaly, of the associated
Jordan aigebra J.hera of degree 2. In agreemant with raf. (5) these are

the coset spaces S0(n,1)/S0(n).



Dimensional reduction yields the Hermitian symmetric spaces (1]

ml(d__.g\ - M:@)

S'I"('(SB . (1.3}

in d=8., where Md(J) and Str(J) are the °“Mdbius® group and compact
form of the structure group of J.respectively. For J of degree 2 these
are just the Kahlerian coset spaces SO(n,2)/[SO(n) x SO(2)]. in agree-
ment with the spaces obtained in d=8 by direct coanstruction (8]. This
shows incidently, that all of the d=8 M-E supergravity theories can be

obtained by dimensional reduction from d=9.

in ref. (1) the scalar field manifoid M was interpreted as a hypersur-
face of a larger space. the latter being identified as a convex cone. In
the special case that M takes the form (1.L) this cone is the self-adjoint
homogeneous convex cone (or “domain of positivity”) of the Jordan algebra
J. In the d=9 case the additional scalar field ot the graviton supermulti-
piet serves as the “missing coordinate™ of the cone which can therefore be
directly identified with the scaiar field manifoid M. The manifoid M is the
hypersurface analogous to that discussed in ref. (1} . The cone of the d=9
model is necessarily the domain of positivity of a Jorgan aigebra .now oi

degree two (i.e. this is not a special case as in d=5)

In the following section we present a more detailad discussion ol
convex cones, their relation to Jordan aigebras. and a discussion of their
relevance to d=5 and d=9 supergravity. We hope to persuade the reader
that the mathematics of convex cones provides a unified understanding of

M-E theories in both d=5 and d=9.

In the subsequent section we present an expiicit construction of tne

d=9 M-E supergravity theory. This differs from the previous construction



(5] in two respects. Firstly we construct the theory in the form that is
dual to that of ref. (5) in that we replace the second rank antisymmaetric

tensor gauge potential Au.v by the dual A This has the advantage

LVOOXN’
that "modified” field strengths (10} are avoided. Secondly we show how
the notation may be simplified to accord with our observation that the full

space M parametrized by the scatar tieids 1s the convex cone of a Jordan

algebra of degree 2.

Like the d=5 N=2 °"magical” supergravity theories discussed in ref. (1)

the d=9 M-E theories are jrreducible in that there is a symmetry linking
every field of the model. It is a caombination of supersymmetry and the
non~ compact SO(n,l) symmetry. An interesting quesition is whether a
subgroup of SO(n,1) can be gauged in such a way that this irreducibility
is not lost. As the (n + 1) rep. branches into the n + singlet rep. of
the compact subgroup SO(n) it is obvious that we shall need 0o gauge a
non-compact subgroup of SO(n,1) of dimension n for which the n + 1 rep,
of the latter is the adjoint rep. The only simple gauge group that fits the
requirements is S2(2;R)= S50(2,1) for n = 2. which was mentioned as a
possibility in ref. (5). We construct the S2(2;R) Yang-Milis-Einstein
supergravity explicitly and show that the gauging does not induce a scalar
potential term in the action. This is in all respects analogous to the

gauging of SU(3,1) in the N = 2 d = 5 case (11].

As previously mentioned one can dimensionally reduce the results for
d=9 to obtain M-E or Y-M-Einstein supergravity theories in d < 9. in par-
ticutar those in d=8. In conciusion we present a briaef discussion of these

lowar dimensional models.



2. Convex GCones.

A convex cone is an open subset of points in an (n+1)-dimensional
Euclidean space having certain properties. Every convex cone has a cer-
tain "characteristic function® @ (12-13] which is a homogenaous function
of degree n+1 in the cartasian coordinates of the points of the cone.and
which can be used as a kernel for a positive definite, symmaetric., “natural®
metric g = —dzlnw. Furthermore.it can be shown that wz is a polynomial
(12). In order to get directly to the results of interest here we shall take
the definition of a convex cone to be a Riemannian space whose metric is

2 .
of this form . The polynomial w is generally factorizable as

W) = A XY N ()

(2.1

i.e. into powers of polynomiais Mi depending on a subset { E 1} of the
coordinates { E¥ }. the subsets being disjoint. In this case the cone C
has a metric that is a direct sum of k factors. Thus it will be sufficient to

consider characteristic functions of the form

7.@4-\\

UOI(E) = {N(i)} v (2.2)

where N is a homogeneocus polynomial of degree v. in this case the
. 2 . ; . .
metric —-d lnN defined in terms of the paolynomial )f giffers from the
) 2 .
natural metric -d &n w only by an unimportant constant factor. We shall
. . . -1.2
choose this factor such that the metric is a = -v ~d !.nAf. On the

coordinate basis [eI} for which

=]
5= 3 €1 2.3



this metric takes the form

G:.‘S = - -‘\;-}::/b‘/\/(i))

(2. 4)

T .

(where 3, = 3,3; and 3, = a/d%t ). The polynomial }‘( can be
intarpreted in certain cases (o be specified later) as the norm form of a
unital, formally reai. Jordan aigebra. whose elements are (%} . The

degree., v of homogeneity of N is also the degree of the algebra.

Notice that the metric a becomes singular at N = 0 . but the cone
consists of a connected s&t of points far which /\f) 0 so the points on
the boundary N = 0 are nqt part of the cone. (What is often referred o
as the lightcone of Minkowski space in special relativity is a actually a
lightfront, and is not a cone). The cone C is foliated by the hypersur-
faces of constant ln)\f (which is real asfvr > 0). The normal to the

hypersurtace lnN = constant is denoted by n and has compaonents

0z = L2 Lo N
(2.5)

on the dual basis e[;

(2.6)



_%_

and differentiating w.r.t. fz we abtain

-
Y‘\: = CL13 % .
(2.8

Because of the form (2.4) taken by 213 the Christoffel connection

reduces to

- _ —‘__ o-a:.:“ l(\)( (2.9
2V )

and as a conscquence of thc homaganeity of /\f)

K
r‘I:S' O« = = G=zxz7
(2.1

The Riemann tensor of C takes the form

(2.1

which is valid in those coordinate systems in which the metric has the

form (2.4). It follows from (2.10) that

"
R::\- w Oy

[
0

(2.12)

which states that C has non-vanishing sectional curvature only for sections

tangent to the hypersurfaces zn/l/‘=const‘ This is a characteristic feature



coaorainates

of a cone.

On a given hypersurface we can set up
d’x (X = 1,2...Nn The n tangent vectors to the hypersurface tx have
components

T

Ve = - (2) Y-

where the factor is inserted for later conveniencs.

the tangent vectors to the normal is expressed by the relation

Nzt

The metric induced on the hypersurface by a is

fay

4

X

Gzz tx t

V= =

At each point C we can introduce a new basis of vectors.

g“: ) tzx Cz=x {:x \g

The metric a has the expansion

Qrs Oz Nz + tzx t:rf %V

on this basis, the coefficients being fixed by (2.8)

the Christoffel connection has the expansion

and (2.15).

(2.13)

The orthagonality of

(2.14)

(2.15

(2.16

Similarly



2

_ x Y
Mook = N2l =3 Oz Qax) - biya tr by te ;@

which introduces the third rank symmetric tensor Txvz' defined on the

hypersurface. The coeificients of the first two terms in this expression are

fixed by (2.10)

Notice that as a consequence of (2.13)

Lz
?;. = - (2—"—\1 tx f)n-_
x Y
}L# (2. 18
so that
i x K A
L L
Gz3 A = -G;B 1 % Qzz,x = -l(% s lzqx
J v
(2.1
But aIJ,x can also be expressed as
t "‘
Q::s)x = Zﬂ(lf\g),;‘ + Z{(IY '3)2,’)«%
(2.2
Now it is straightforward to show that
L
P
(‘I,X = (_2.‘\ %1,‘
v (2.20

(2.19) with (2.20) and using (2.17) we deducs

so that by comparing

that
il PN — R
‘X)r T \(‘l: -3,‘7 + \ xy2 JLI 2 22



_\\_

Similarly. we have

T e _ Tz
Var s o5 C ey + Tupn l
' (2.23)
Now from (2.17) we have that
h I ¥
T)L?lz = - tx ty JL?. PT.TK )
(2.24)

as tha definition of Txyz' Hence

Tx\/z./-w s - 3‘\'& )(—-Sf *—szw r‘:r-‘-\'va
T T B (2.25)
*K%_X {x{7t1hw r‘::'r\c)\_

(by using (2.18) in the last term). The first term may be simplified by

means of (2.12). To simplify the last term we make use of the expres-
sion (2.9) for FIJK in terms of . This may be written as
-1 ]
Mo = -4 (PN 2 dzasey = 2 203Ny
v 2 2 /
N (2.26)

from which follows

1
PI?K/L. = —_L; ‘313‘\(\\-)[ 4 L(.\) ﬂ(‘!‘. P:KLS -— 3¢ QK-;_S ﬂg'ﬂ\_)
L
N

—

3
3 003 O Ne Y Gan Ge
p 2

(2.27

Because of the orthogonality of n and tx onily the first and tast terms in



(2.27) contribute in (2.25). In this way we arrive at the result

v

L
Tayzsw = Gv‘\ 2@ fer o -3 Ty Ty

(2.28)

- l‘ {i*y tz‘\:w \szsnk/\(
N

Notice that Txyz'w is totally symmetric in XyzZw. This obsarvation is

needed to determine the integrability conditions of (2.22) and (2.23).

From (2.22) we have

- (2\'q T LT .
Tx;¥;z = QT\ :,z%m/ + xywj;z bz 4 \xyutIsl .
Hencse,

*1*}{151} i ZT{{IEZ e+ Tuxgy (%:1“1 *Tﬂ““t:ﬂf

(2-30)
where we have used (2.21) and (2.22). The ftirst term in the round
bracket vanishes because of the symmetry of Txyz' leaving
el = 209 Gae o Ty Tl | s

4 7 — F 3 .
v 1 O T2luv | T2 (2.3D)

But the left-hand-side is proportional to the Riemann tensor K of the

hypersurface ln)/ = const. Thus we deduce that

c——

14 = - 4
yzxv 7(\%x(‘y Q3v + T 0y V2w

\
e ~ —

(2.32)



-~ \} -

This is just the curvature of C projected onto the hypersurface, sao the
hypersurtace has vanishing second tfundamental form. It is not difficult to

demanstrate this directly.

it turns oul that the cases of interest for supergravity are those for
which v is 1.2,0or 3. ftor which the last term in (2.28) vanishes. We
shall consider each case in wrn.starting with v = 3. In this case the

poiynomial \| can be written as

N-= Cosn$%39%

(2.33)

and (2.28) becomes

T"7'7-3W = E K 3@13:)»0 -2.—\—(:7 Tz)wu.}

(2.34)

This is identical to the equation (2.17) of the first of refs. (1) and is the
basic equation of the model because its integrability condition is again
(2.32) and so it determines the curvatwre of the hypersurface ln}\f=
const. on which Txyz is defined. This hypersurface can be identified with
the maniicid M parametrized by the scalar fields of d=5,N=2.M-E super-
gravity. In the case that Txyz;u = 0 M is evidently a symmetric space
and. in fact., is the space Stro(J)/Aut(J) associated with a unital. for-
mally real. Jordan algebra J of degree three. The association comes

about because.in this case.the tangent space components Ti' of the T-

ik
tansor are constants that can be identitied as the non-trivial structure con-
stants of the aigebra (i.e. those not involving the unit element of the

aigebra). The polynomial /\( is identifiable as the *norm form" of the

algebra. which is of degree 3 because /\{ is cubic (1}.



- -

Now we turn to the case of v = 2. We can write

N = C::‘5 E: g’

(2.3%
in this case. From (2.24) and (2.26) we have
=z 3 X
T,,_\/Z = _\__\‘%,.,'\'.7%2 D;ng = O
29 N (2.36)

because N is quadratic. This is consistent with (2.28) for v = 2 and

the curvature tensor K reduces to

K\/zxv = -1 %xf_y ‘321\/ )

(2.37)
80 the hypersurfaces 2n/‘/= constant of C are maximallly symmetric
spaces. Positivity of a requires that /‘/ have "Minkowski signature”, i.e.
(+,~,~,...~). hence /\f is an SO(n,1) invariant. But symmetries of

are isometries of a sa the hypersurfiace has isometry group SO(n,1l). AS

it is a maximaily symmetric space it must be S0(n,1)/30(n).

One can also arrive at this conciusion by noticing that as the T-
tensor vanisnes the associated Jordan aigebra has vanishing non-trivial
structure constants. Such algebras are sub-—algebras of Clifford algebras of
quadratic forms and are denoted J(Q). The reality of J requires that
/V=Q have Minkowski signature, and the assoc:ated convex cone (which is
the set of points in exp(J) ) is locally S0¢1,1)x80¢(n,1)/50(n). The
latter factor is just SEr,(J)/Aut{J) for J of cdegree two. and this space

can be identified with the scaiar fJield manifaia M of d = 9 M-£



supergrayvity.

Finally, for compieleness.we may consider the case v = 1. In this

casse

N = %

(2.38)

with § a real number. The cone C is necessartly one-dimensional and
is just the positve real axis. The hypersurface N= constant is just one
point so the equations (2.28) and (2.32) are not applicable. The associ-
ated Jordan algebra is simply the algebra of the real! numbers. This case
is relevant o d=10 M-E supergravity as the manifold parametrized by the
single scalar field of this model can be idenltified with the one- dimen-

sional cone.



3. 4 = 2 M-E supergravity, — -

We present here the d = 9 M-E supergravity in the dual form to that
given in ref. (8). This could be obtained by a guality transformation. foi-
lowing the procedure of ref. (10). bul we prefer 1o obtain it directly. in
order lo have it in our notation and conventions. After presenting the
Lagrangian in this torm we show how it may be rewritten in a simpler form

by making use of the connection with the geometry of convex conses.

Our conventions are as follows. Wa use the "mostly minus® maetric,
M = (+1,-1,-1,...-1) for the d = 9 spacetime tangent space. The
charge conjugation matrix C is symmetric and ail spinors are °“pseudo-

Majorana” i.e. they satisfy the usual Majorana condition

-

T-1C

(3.1

u T a4 T

but C—ll"u'c = +T rather than the usual c'lr“c = =T ot d = 4,
There exists a basis for the TI'-matrices in which they are all real and in
this basis all spinors are also real. We make use of the “"unconventional

convention® that compiex conjugation does not change the order of pro-

ducts of anticommuting spinors. so that no factors of i are required for

reatity of the Lagrangian.

The fleids of the d = 9 supergravity muitiplet are

™
(e 00 5 Mg, A 5 X5 o )
The spin connection wu.mn of the d = 9 spacetime is given as usual in

. . m . u
ter ol e vielbain nd se .
ms th b eu_ a s invar em The Rleman tensor Ru.vmn ol

the @ = 9 spacetime is defined as

Lvmn 4 vmn um - vpn



and the Ricci tensor s given by the coniraction Ru = R va The

v - Rpymn®
fields Au.vpox and A,U. are Abelian gauge tields with field strengths

Guvpckn and Fu.v' respectively.

The fieids of the @ = 9 Maxwell muitiplet are

ip“r)*}'#%

and the combined fields of the @& = 9 M-E supergravity theory are

iern 3 Wp 5 Rpvper AN X 5 e

where I = 0,1,2,..n so that A}L includes the n vector fields of the

Maxwell mulitiplets and the single vector field of the graviton muitiplet. The

index a takes the values 1,2,..n and is an index of SO(n). the tangent

space group of the manifoild M parametrized by

X
"' x = 1,2...n.

the n scalar fields

. . . . . - a .
As in previous constructions we introduce a vielbein fx anag its

inverse f: for M', in terms of which the metric is

n

] b
Tey = a8y S

5« §y

(3.2)
We introduce the connection ﬂx ab af M’ through the equation
g g
. ‘Q{ v g = o
LIRR B Y <} (3.3)

which determines it implicitly as a function of fa This connection is

used to detine the composite SO(n) gauge potential



n i _ ab x (3.4
Qr = W) 24

and this in turn to define the covariant derivative @

poof A
RN S O

(3.5
a _ a 1 mn a . . - .
where Dux =43 N + ;Uu. r‘mnx is the ordinary d 9 spacetime
Covariant derivative acting on spinors.
. m um '
F ly. h = , = .
inally. we note that e deteu R Rume and that
— \
2 = e%( —_
F (3.6)
With these conventions the d = 9 M-E supergravity Lagrangian is
-y R L P PPy \ z'L’ ¢ Gf"{")‘“\
= - — 4 L —_——
e i T /o URS 2lt [uarc)v»\

-1 d FL R

. AR I W N A A
-LX BX N @Sm + _er"r' uf) oo+ L6, b\ Y M%%

T A F\,(x F"PW,.\ AL L ©.)

M—

ST P00 LRI (W), AN N

r3 2 F(,\«&“{ Y"‘f +1\,‘M»\’°\q)l

-5
IxT!

2

-1 = VPorK
(‘ L f“’f"m‘L’xpgpr f LPSB
e x

L A SN SN

Ixb! /

e (30 (PSP oo o) ]

Z-L Ci..v?vm« EX- QY pow 7\,

+ & Z_-l

——



rc(rAmec T

F = A)KS\": + j (3.7

+ — Czse v e 4
b3 <5 I ‘ /

where L4 are the 4-fermion terms. which we have not computed. The

supersymmeltry transformaton laws are

N S LV R RN
= . oL T (n.s e

Eg = Dpe + LT W R (Y Sl T

Vir Ak S v PYNPSY -1
-i@. Corﬁskﬁ (1 f - Iz g ‘I \é i
Y 7! s r

T Ve T = a - I = I
“F = -1\, eﬂrx - L?i - ef‘r?( + Lz qur\\
ghrv!a% = - 21 é r‘rvrv\—x -iiL é- r‘

{ue 257

T > \)rtli(
§X li@c-\e- +:‘Ei\«: Fg.. n1%e +F£—-Ui C rakkp € +ga

%:@"#xse + ‘:Z\\: Fg, e + 9, (3.8)

tpvee )

where 63 are 3-fermion terms that are needed only for the computation of

L,

The quantities hy hI,ha‘,hI'El and a are

13 functions of the scalar

fietd ¢x. whereas CIJ is constant,

action. These quantities are subject

as required by gauge invariance oi the

o algebraic and differential con

straints. The algebraic constraints are

0.13- = \\I \\3 4+ »\: \ﬂ‘:'

(3. 9a)

Czxx

1\'\:\’\3 - O-:I:I
(3.9b)

and



It follows from (3.9a) and (3.10) that

I

he = Gzx \

a

. Ta
»'\-: = Qzx=z \'\

i.e. that éIJ serves as a "metric® for [,J indices.
The differential constraints are

Q

Mi)x gxq \V\z

n

5—’
H
*
]

_J;:\f“

and

a

\"\1 © X = g:\‘:\:

/

T

AU N

wners the sem(—Coion inaicates covariant gifferentiation on M’.

(3.1

(3. 11}

(3.12;

(3.1

[n princigie



the algebraic constraint (3.9b) implies an additionat differential constraint

following from CIJ x =9 but this is identically satisfied as a conse-

quence of (3.12) and (3.13). We remark also that

T3 ! 33/

C = CL G C-_:';’

(3. 14)

IJ

where a ara the components of a-l. is also constant. i.e.

x3

(3.19

despite the fact that a is a function of ¢. (This fact has a direct analo-

gue in d = 5 when the modei is one of those associated with a Jordan

algebra (11).

The differential constraints (3. 12) and (3. 13) have as their integra-

bility conditions the constraint

Keyar = = 2 ugp 4779

(3.16)
on the Riemann tensor K of M, in agreement with ref(5), and with
(2.37).

Now the constraints (3.9) and (3.10) imply that
.3
NQ\\ = C::‘J \r\ \'\ = \
(3.17)

S0 that .referring to the discussion of the previous seclion., we sge that

the functions h are interpretable as the coordinates of a cone C



restricted to the )/= 1 hypersurface. with znA/ being the kernel of the
natural metric aIJ on C. The function s‘IJ is simply the restriction of
arg to this hypersurface. which is to be identified with the manifold
M’ = S0O(n,1)/S0(n) whose coordinates are the scalar fields ¢x. As
explained in the previous section the guadratic form N can also be inter-
preted as the norm form of a Jordan ailgebra of degree two. The super-
gravity model is entirely determined by this associated algebra as all the
scalar field interactions follow from a Kknowiedge orﬁ/. We shall now
show how the Lagrangian (3.7) can be rewritten in such a way as 1o

make this fact evident. To this end we define

v S
s s .

s
M
by

(3.18)

The kinetic terms for the scalar fields ¢x and O. can now be rewritten

jointly as

L oaas ()T

(3.19)

so that the ﬁ[ may now be caonsidered as n + 1 independent scalar fields
which paramelrize a space with metric a‘IJ' Whereas previously we had
N(h) = 1., so that the space M'. parametrized by the ¢x,was the N = 1
hypersurface of the cone C. now we have

~ I ~T "lﬁ wlb-
)‘((\ﬁ\ = C:s \« \" = Z - e

(3.27



~ T
so that the variables h™ may be considered as coordinates for the entire

cone C. Clearly a;z is the metric of C. as the notation suggesl!s.and

from the previous section we know that it is derivable from N as (v

= 2)
Q::r = _‘;—_?:3 La NQ"\
(3.2
(where aI = a/aﬁl). indeed. making the identification
\nz = C1:::*-\'\ = ’):.BI La MQ"\
(3.22)

as required by the interpretation of ™ as the coordinates of a point in C.

it is straightforward to verify that

N (3.23)
which is equivalent to (3.9b). We remark. further, that (3.20) s
equivalent to
g = —-.:_- La NL\"B
(3. 24)

sOo that the scalar field o when written as a function of the coordinates h

of C is nothing but the kernel of the natural metric on C !

We now proceed to rewrite the Lagrangtan in terms oi the variables

h L . We define



ha = = W . | (3.25)

and we remark that as a/ac commutes with a/a¢" the differential con-

straints relating ﬁ[ and ﬁ? are the same as those relating h. and h?.

I

We shall find it convenient to define

5—'1
H

]
>
H
st
H o
~

(3. 26)
and
- ~ A Ao
A )
C = L‘: = §
(3.27)
and
T - c -Li2T C
bz = - L‘I(\q *2C t = . (3.28)
5¢
whare
V‘A% - \ o
o} -?gis
(3.29)
We can now write the muitipiet of the d = 9 M-E supaergravity as
" T A ~ T
e, : A Ao -\ 15
ir)“\)f}r"["hl [‘/X y

in which we have combined the n + 1 spinars A2 and x into the single

. . - o . LA
set of spinors x , A = C,1,2,...0. The covariant gerivative of X 1Is

"



A A AB B
;) =D + A wh
( u.X) u.X u X ere
AS o (o)

I as
o 9}. (¢ ) _ (3.30)

A

In this notation the Lagrangian takes the form
- -l rg{ckﬁ
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g

-\ visAkSYe T -
L C:-; 5‘_)‘. / I v .- Ayusre + 'iq. (3.31)
Lfl xS r S .

The supersymmetry transformation laws are

* - - - A
Se =‘;€P”U€r o WSk - rex
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Here., the number @ is
L= |\ =%

Qur claim that the full scalar manifold M is the cone C of a Jordan aige-
bra of degree 2 is now manifest. Notice also that the coefficient of the
kinelic term of the vector fields is simply a multiple of the meltric of C, so
that this construction provides a geometrical interpretation of this function,

as in the N = 2 d = s case.



4. Sa(2:R)Y gauging.

For n = 2 the non-compact symmetry group of the 4 = 9 M-E
theory is SO(2,1)= St(2;R). As discussed in the introduction this group
may be gauged by the three gauge fields A}L without destroying the irredu-
cibility of the ungauged theory. In this section we shall construct this

model.

Firstly we need the explicit form ot the Sf2(2;R) transtormations.

Those that are non-zero are

§4"

§ N

K’;QM oL

L:Q*) r\b e

X X =y w
SF)- = Q’\K\: Ar ol

(4. 1)

where czk is an infinitesimal parameter. As the 3 rep. of S1(2;R) is the

adjoint rep. the matrices Mk are simply

X

(MK\;;I "_ gxs

(4.2)

X
I

are the Killing vectars of S2(2;R)/S0(2) that generate the SE(2;R)

Py
where the fKJ are the St(2;R) structure constants. The quantities K

isometry group, and

aly

ab a
Lo ) = Ko7 o Q™

(4.3)

with K? = K)I(f:. These Killing vectors can be expressed in terms of the

structure constanis of S(2;R) as
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a

K: = g::r\‘ \n“ Qéx \n:qu§\ (4.4

The rigid S2&(2;R) Invariance is now promoted to a local gauge

invariance by covariantisation of the action. We make the following

replacements
3;-‘I’x —> @;—# \x
@rx\‘ - Lﬁr\\‘

x

'3),_+ & SP‘J— Kz

Tz e .
@) + gy b= e

F/:__.», £ - B

z - K
}u r./ r 3 QK: Ar -b\‘)

(4.5)

where g is the S2(2;R) gauge coupling constant. The action is now

invariant under the gauge transformations

P A I 3
gk = -——%b dgﬂr = (’Do(I +--f;,:3 A}. a(K

\,

)

\
o>
ﬁ

(4.6)

This covariantization breaks supersymmelry which is restored by the addi-

tion to the Lagrangian Z of the term

—_— b
20 - s ke K g 0N
2
(4.7)

The supersymmetry transformation rules need no modification. Notice in



particular that no scalar potential is required. This is to be expected from

the fact that the gravitino is S£(2;R) inert.

These resuils are very similar to those of the SU(3,1) gauging of
N =2 d =5 M-E supergravity (11}, the principal difference being that
here naive covariantization is sufficient , no Chern-Simon terms being

required.

As St(2;R) is non-ilinearly realised (as must be the case for a non-
compact gauge group if ghosts are to be avoided) it is not a symmetry of
the ground state. It is broken to U(1l) . its maximally compaé:t subgroup.
The gauge fields A}L decompose into a singlet and a doublet (i.e. a pair
of fields of charges +1 and -1) of U(1). The singlet can be identified as
the gauge field in the graviton muitiptet and it gauges the unobroken U(1l)
factor. The remaining charged pair of gauge fields acquire a mass. as
do the spinors xa (from the new term (4.7) in the Lagrangian). These
massive fields form a massive centrally charged d = 9 vector multiplet.
the central charge being the U(1) charge. Thus we have eflactively con-
structed a model with a gauged central charge. Again this is all directly

analogous to the N = 2 d = 5 SU(3,1) gauging.

S. Remarks.

As we remarked in the introduction. the @ = 9 M-E theory can be
dimensionally reduced to give a class of 4 = 8 M-E theories. If one
takes the Lagrangian in the form (3.7). where ¢x and ¢ are the indepen-
dent fieids the reduct'ion proceeds in exactly the same way as for
d =5d = 4. and wilth the same result. viz. that M' = Stry(J)/Aut(J)
is replaced by the Kahlerian manifold M&(J)/Str (J) parametrized by

(n + 1) complex fields. The scalar field g plays no part in this reduction

but simply carries over to @ = 8 as the scalar field of the ¢ = 8 super-
gravity muitiplet. The scalar field manifoilds in @ = 8 obtained by gimen-
sional reduction from @ = 9 are therefore locally of the form

SOQ)‘B pS SOQ‘)IX/L Sole x SOQ\l y w2
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But this is aiso the general resuit (8], so all d = 8 M-E theories have a

d = 9 counterpart.

It seems very likely that this is true for d < 8. In this case gait
maximal M-E supergravity theories in d € 9 must be determined by the
quadratic poilynomial N. For d = 8 this comes about because

K@,z = LaNG@+3)
is He kemmel for the Kihler matric om  SO@2) [ S0« Soqy] |
Note that the real ranks of the symmetric spaces SO(n. 1)/SO(n) and
SO(m.2) /(SO(m)xSO(2)].m»2.are one and two respeclively. The increase
by one in the real rank of the scalar field manifold under dimensional
reduction on a torus is a general feature of supergravity theorias. Hencse
further dimensional reduction to d-dimensional spacetime will result in a

supergravity theory with scalar field manifold Md of real rank 10-d. Specifi-

cally

Ma =  Solask,10-4) k= a.4
So(a+k) x so(lo-4)

In d=7 the manifold Md iIs quaternionic for n=1 and in d=6 it is quatern-

ionic for all n. In d=2 the manifold has real rank 8 and may be
parametrized by octonions. It would be very interesting to know whether the
scalar manifolds in dimensions d<8 can also be described by a *~ Kernel

function® which is a hypercomplex (quaternionic etc. ) extension of the

norm function in d=9.

Finally. one interesting facet of the Lagrangian (3.31) is that the spin
3/2 and spin 1/2 kinetic terms are of opposite sign. We agree on this
point with ref. (4) . and it is also true ot the d=8 M-E supergravity theory,
We do not beleive that this is a matter of convention but we have no
explanation for it. Unlike the signs of bosonic kinetic terms those of fer-
mionic kinetic terms are not fixed by positivity of the energy. so there is

no priori reason for the latter to have any particuiar sign.
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